Twist Beam Can Improve The Fiber Information Carrying Capacity

FiberStore news, the latest research achievements from a research team in the United States show, encoding information through twist beam of different shape can improve the Internet "Information Super Highway" carrying capacity, which effectively alleviate the network congestion.

Internet traffic is growing exponentially, researchers have been trying to enhance the communication capacity of fiber optic cable. A successful method used in the past 20 years, basically is to rely on the more "lane", refers to use a different color or wavelength to transmit different signals. But just like in the real highway, since the amount of "lane" is increased, each width is narrower, so the data stream can only be mixed together.

From past few years, there are a number of research teams trying to get through the shape of light beam to encode the information, in order to ease network traffic congestion, the technology used the called light property of orbital angular momentum. Currently, the network signal is the use of straight spread light beam to transmit, but the specific filters can make the beam distortions in varying degrees in the process of moving. However, the experiments results using this effect are not ideal: different shapes of light beam often mix with each other in advance distance of less than 1 metre.

But now, researchers at Boston University and the University of Southern California cooperated, found a way to make the different shapes of light beam travel separately, the transmission distance reached a record of 1.1 km.

In the experiment, the researchers designed and built a 1.1 km long glass fiber cable, the cross section has a different refractive index (used to measure the travel speed of light in a specific medium). Then, they sent beam of winding and straight along the cable.

The research team found, light output and input can be matched, show that the various shapes beam does not appear mixed. Different refractive index significantly affects only a certain shape of beam, so these different shapes of beams are moving at different speeds in the cable. "This means we can keep them separate." Research team leader, Boston University Electrical Engineer Saida Si Rama Ramachandran said.

The researchers carried out several tests using beam of clockwise and counterclockwise with varying distortion degrees, and found there are about 10 different shapes of beams can be used to transmit information. The results are exciting, because every shapes may presage the "information highway" traffic is expected to reach a whole new level. Based on this, the data stream is is further divided into narrow "lane" according to the different colors, thereby maximize the flow.

However, the laboratory results applied to real world still need time, in part because the current Internet fiber optic cable only transport straight beams. Ramachandran said, a more direct goal, may be used in server farm between servers by some large network companies like Facebook, install cables which can transmit twisted beam in short distance.

Connectors Are Termination Of Cables And Other Applications

Fiber optic connector is a mechanical device mounted on the end of a fiber optic cable, light source, receiver, or housing, the connector allows these devices to be mated to a similar device. Of the many different connector types, connectors for both glass fiber cable and plastic fiber optic cable are available. The terminal ends of all fiber cable strands shall be field connectorized. It is IST’s practice to terminate both ends of all fibers within a fiber cable with ST, epoxy and polish style connectors. Termination of older cables may be of several types including mechanical or fusion spliced pigtails.

There are a number of connector styles on the market including LC, FC, MT-RJ, ST and SC, belong them the SC Connector is the most popular connectors. Manufacturers and distributors are more likely to have equipment to accommodate SC and ST style connectors than any other connector style. That should be a consideration when making product selections.

SC Connectors

SC connectors are used with single-mode and multimode fiber-optic cables. They offer low cost, simplicity, and durability. SC connectors provide for accurate alignment via their ceramic ferrules. An SC connector is a push-on, pull-off connector with a locking tab. Typical matched SC connectors are rated for 1000 mating cycles and have an insertion loss of 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for SC connectors.

FC Connectors

These connectors are used for single-mode and multimode fiber-optic cables. FC connectors offer extremely precise positioning of the fiber-optic cable with respect to the transmitter’s optical source emitter and the receiver’s optical detector. FC connectors feature a position locatable notch and a threaded receptacle. FC connectors are constructed with a metal housing and are nickel-plated. They have ceramic ferrules and are rated for 500 mating cycles. The insertion loss for matched FC connectors is 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for FC connectors.

ST Connectors

The ST Connector is a keyed bayonet connector and is used for both multimode and single-mode fiber-optic cables. It can be inserted into and removed from a fiber-optic cable both quickly and easily. Method of location is also easy. ST connectors come in two versions: ST and ST-II. These are keyed and spring-loaded. They are push-in and twist types. ST connectors are constructed with a metal housing and are nickel-plated. They have ceramic ferrules and are rated for 500 mating cycles. The typical insertion loss for matched ST connectors is 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for ST connectors.

LC Connectors

LC connectors are used with single-mode and multimode fiber-optic cables. The LC connectors are constructed with a plastic housing and provide for accurate alignment via their ceramic ferrules. LC connectors have a locking tab. LC connectors are rated for 500 mating cycles. The typical insertion loss for matched LC connectors is 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for LC connectors.

MT-RJ Connectors

MT-RJ connectors are used with single-mode and multimode fiber-optic cables. The MT-RJ connectors are constructed with a plastic housing and provide for accurate alignment via their metal guide pins and plastic ferrules. MT-RJ connectors are rated for 1000 mating cycles. The typical insertion loss for matched MT-RJ connectors is 0.25 dB for SMF and 0.35 dB for MMF. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for MT-RJ connectors.

MTP/MPO Connectors

MTP/MPO connectors are used with single-mode and multimode fiber-optic cables. The MTP/MPO is a connector manufactured specifically for a multifiber ribbon cable. The MTP/MPO single-mode connectors have an angled ferrule allowing for minimal back reflection, whereas the multimode connector ferrule is commonly flat. The ribbon cable is flat and appropriately named due to its flat ribbon-like structure, which houses fibers side by side in a jacket. The typical insertion loss for matched MTP/MPO connectors is 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for MTP/MPO connectors.

There are also other types of connectors, have a wide seleciton of fiber connectors at FiberStore.